该算法基于以下简单思想检测社群:多种流体在非均匀环境(图拓扑)中相互作用,并根据它们的相互作用和密度进行膨胀和收缩。
值
cluster_fluid_communities()
返回一个 communities()
对象,详情请参见 communities()
手册页。
参考文献
Parés F, Gasulla DG, et. al. (2018) Fluid Communities: A Competitive, Scalable and Diverse Community Detection Algorithm. In: Complex Networks & Their Applications VI: Proceedings of Complex Networks 2017 (The Sixth International Conference on Complex Networks and Their Applications), Springer, vol 689, p 229, doi: 10.1007/978-3-319-72150-7_19
参见
参见 communities()
以从结果中提取成员资格、模块化分数等。
其他社群检测算法:cluster_walktrap()
, cluster_spinglass()
, cluster_leading_eigen()
, cluster_edge_betweenness()
, cluster_fast_greedy()
, cluster_label_prop()
cluster_louvain()
, cluster_leiden()
社群检测 as_membership()
, cluster_edge_betweenness()
, cluster_fast_greedy()
, cluster_infomap()
, cluster_label_prop()
, cluster_leading_eigen()
, cluster_leiden()
, cluster_louvain()
, cluster_optimal()
, cluster_spinglass()
, cluster_walktrap()
, compare()
, groups()
, make_clusters()
, membership()
, modularity.igraph()
, plot_dendrogram()
, split_join_distance()
, voronoi_cells()
示例
g <- make_graph("Zachary")
comms <- cluster_fluid_communities(g, 2)